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Granada, E-l807l-Granada, Spain 

Received 2 April 1991, in final form 29 October 1991 

Abstract. We Study d-dimensional lattice model systems whose dynamics consist of compet- 
ing independent processes which may induce non-equilibrium steady states. Interesting 
phase transitions and critical phenomena ensue which are influenced, even dominated, by 
a sort of dynamical bond disorder. ne latter, which may occur in natural systems, reminds 
us of the disorder in mare familiar bond-diluted and other impure models, for example 
percolation-like phenomena arise in some of our model cases. Exad solutions for d = 1, 
some exact results for d >  I ,  and a comparison with more standard, either quenched or 
annealed, magnetically diluted models are reported. 

1. Introduction and definition of systems 

Lattice systems with quenched (frozen-in) impurities nowadays have an undeniable 
interest, both as an ideal representation of some disordered systems in Nature and as 
a convenient arena for studying critical phenomena one step beyond the familiar pure 
models. A well defined case which has been attracting considerable attention is the 
randomly dilute quenched Ising model whose impurities are either non-magnetic sites 
or broken bonds. Pioneering studies revealed that the transition temperature for Ising 
ferromagnets with quenched dilution decreases monotonically from its pure value to 
zero at the percolation threshold, and the system is characterized by percolation critical 
behaviour as one vanes the dilution parameter at zero temperature (see, for instance, 
Stauffer 1979). More recently, Monte Carlo and other techniques have revealed that 
the transition for a 3~ lattice with quenched site dilution is a sharp second-order one 
with effective critical exponents changing from the king pure value to a new set of 
impure values. This may be interpreted as caused by a flow from the (unstable) pure 
fixed point to a stable impure fixed point, the latter associated with a very small 
asymptotic critical region. This seems to be so small that it sometimes prevents one 
from detecting impure behaviour while, most often, it leads in practice to a monotonic 
variation of the critical exponents with dilution (Marro ef  a/ 1986, Labarta et a/ 1986). 
Although this picture has essentially been confirmed by several other independent 
studies (Chowdhury and Stauffer 1986, Braun and Fahnle 1988, Holey and Fahnle 
1990, Heuer 1990, and references therein), the relative smallness of the impure critical 
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region and other facts have so far precluded the definite exclusion (see, however, Wang 
and Chowdhury 1989) of the case of a line of fixed points, one for each value of the 
impurity concentration. Even though this would indeed be a rare situation in equili- 
brium phenomena, one should conclude that, in spite of much recent effort, the 
magnetically diluted problem is still open today. In fact, it may even be said that the 
actual relevance of that (quenched) bond-impure king model for interpreting 
the properties of a class of magnetic materials remains unclear. 

point of view. We investigate the behaviour of a d-dimensional nearest-neighbour 
(NN) magnetic king model whose dilution (actually, a sort of bond dilution) is caused 
by a relatively complex kinetic process which also induces (in general) the presence 
of non-equilibrium steady states. Namely, our system has a Markovian time evolution 
due to the simultaneous competition of (e.g.) two independent local spin-flip processes, 
each having a different probability, in addition to the action of a thermal bath. Those 
two processes occur as if the exchanged interaction (bond) between the involved pairs 
of spins has two different values, J and 0 respectively. This asymptotically produces 
a random spatial distribution of broken bonds which is similar at each time to the one 
in the quenched dilute system. The motivation for this model is threefold. First, while 
solvable stochastic microscopic models capturing essential features of disordered 
systems are scarce at present, one is confronted here with model systems whose exact 
solution is feasible for d = 1; moreover, some exact results may also be obtained for 
d > 1. Second, the chances are that, due to atomic migration, the macroscopic properties 
of magnetically diluted materials are more closely due to an impurity distribution 
which changes with time (perhaps in some way resembling the situation in our model) 
than to the quenched distribution in the more familiar models. Finally, our models 
lead to the study of non-equilibrium steady states, phase transitions and critical 

1981, Katz er al  1984, van Beijeren and Schulman 1984, Marro 1986, Marro el al 1987, 
Dickman 1989, Droz et a l  1989, Haider et a /  1990, Garrido et a1 1990). In fact, a 
conclusion there is that critical phenomena in non-equilibrium systems involving 
disorder are amazingly rich. Our models may thus allow for stringent tests of concepts 
and theories. 

The same philosophy may of course be applied to the study of other impure systems. 
For instance, in relation to frustration (see, for instance, Fisher et all988 and references 
therein), it is rewarding to consider an Ising system whose impurities are spins at one 
of the two possible values, either +1 or -1, in such a way that they introduce no net 
magnetization. The Monte Carlo study of that system in three dimensions (Labarta 
et a1 1988) reveals a situation essentially differing from that described above for the 
dilute king case, Namely, one finds first-order phase transitions, and also second-order 
ones (the latter seem to be characterized by small values of the magnetization critical 
exponent, thus sometimes resembling first-order transitions); the nature of the phase 
transition essentially depends on the symmetries of the impurity distribution. As a 
further step towards a better understanding of those impure situations, we investigate 
here a ferromagnetic model in which competing kinetics simulate the existence, with 
a given probability, of antiferromagnetic bonds having a very large strength. Of course, 

as in two recent studies concerning non-equilibrium spin-glass (Garrido and Marro 
1991a) and random-field (Mpez-Lacomba et a/  1991) systems, respectively. Eventually, 
we also refer in this paper to those non-equilibrium versions of familiar disordered 
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models because they are intimately related to those we are studying here. The applica- 
tion of our strategy to the study of dilute spin glasses (Klein et al 1989, and references 
therein) also seems interesting a priori. 

This paper is organized as follows. The basic model system is defined in the 
remainder of section 1. Section 2 introduces notation, discusses transition rates, and 
contains a brief description of some techniques and general results which are necessary 
in our study. Sections 3 and 4 are devoted to the solution of the two main ID  versions 
of interest, respectively. In particular, we also introduce in section 3 a proper definition 
of energy. Then, we compare in section 5 our model systems with the corresponding, 
more familiar, equilibrium ones having either quenched or annealed impurities. Section 
6 contains some exact results concerning ZD and 3~ systems, namely upper bounds for 
transition temperatures in various situations and cellular automata representations of 
the systems at T = 0. Section 7 summarizes our main conclusions. 

Consider a d-dimensional lattice 0 which is in contact with a thermal bath at 
temperature T. The probability of any configuration s =  Is, = *l; x E Cl] at time f 
satisfies the (Markovian) master equation (see, for instance, Ligget 1985): 

dP(s;  t ) / d t = x  [o(Si; X ) P ( S " ;  1 )  - w ( s ;  x ) P ( S ;  t)]. (1.1) 
r 

This describes stochastic changes s, + -s, of the spin (or particle occupation) variable 
at site x which generate a new configuration, to he denoted si, from s with probability 
o ( s ;  x) per unit time. Unlike in the familiar Glauber (1963) case, however, the 
microscopic dynamics here are assumed (see also Marro and Garrido 1990) to involve 
n competing Glauber spin-flip (or creation-annihilation) mechanisms. That is, 

o(s ;  x)=zPiwi(s; x) Zppi=l ( i = l , .  . ., n). (1.2) 

It is convenient to assume that each elementary kinetic mechanism driven by oi satisfies 
a detailed balance condition, namely 

(1.3) wi(s; x) = wt(sx; x)  exp[-AH;] AHj E H < ( s x )  - H((s) 

with respect to some specific 'Hamiltonian'. We shall assume, for simplicitly, 

H ( ( s ) = - K ;  1 s , s , ~ - p h ~ s ,  Ki = pJ,  p = ( k . T ) - '  (1.4) 
" x 

where the first sum is over all N N  pairs of sites. 
The interpretation of (1.1)-(1.4) is that kinetics involve several (canonical) Glauber 

mechanisms, each acting with probability pi as if the strength of the bonds has a given 
value J, .  In other words, our system is precisely the Glauber (1963) or kinetic king 
model with non-conserved magnetization (see, for instance, Stanley 1971 ), except that 
the value of J implied at each kinetic step is chosen at random from some given 
distribution p(J ) .  Given that the kinetical processes of interest are local (e.g. (1.2) with 
(1.3) and (1.4) only involve a given spin, say s,, and its NN) one may interpret 
alternatively either that J is changed (according to p ( J ) )  at each step all over the 
system, orelse that the change only affects the bonds reaching s,. Whenp(J) = S ( J -  Jo) ,  
where Jo is a constant and 6 represents a Dirac delta function, any spin-flip rate 
satisfying (1.3) drives the system to the Gibbs equilibrium state corresponding to 
temperature T and energy (1,4), with K ;  = pJo for all i, whose nature is well known. 
For example, the system undergoes a continuous phase transition at critical temperature 
Tea 0 for d a 1, respectively. Under general conditions, however, the situation is more 



1456 

complex. Namely, the competition between several values of J will in general cause 
the bonds to be randomly distributed (always according to p ( J ) ) ,  either only in time 
or in time and spatially at  each time, respectively, for those two interpretations. That 
competition will thus induce two main effects: 

(i) a completely random distribution of the bond disorder, as if it it is produced 
by some mechanism at infinite temperature; 

(ii) a tendency of the spin system towards a non-equilibrium steady state, as if it 
is acted on by some external agent which is non-Hamiltonian in general. 

Under those conditions, we would like to understand the dependence of the 
non-equilibrium state on p ( J ) ,  T, h and w ( s ;  x), analyse the nature of the phase 
transitions and critical phenomena which may possibly have the system, and investigate 
the suspected relevance of the model to understanding certain peculiarities of some 
disordered natural systems. In particular, we are interested here in distributions p ( J )  
such that the resulting system bears some interest in relation to the study of percolation- 
like phenomena and other impure situations, as explained above. 

P L Garrido and J Marro 

2. A quasicanonical competing kinetics 

Sections 2-5 deal with d = 1. Then the most general transition rate having a local 
nature (i.e. it only involves sites which are NN of the one whose change is attempted, 
say s,) which satisfies (1.3) with (1.4) is 

Wi(s; x ) = f r ( S ;  K i ) [ 1 - s x a h +  CTi(ah-sx)u;l (2.1 ) 

f"(s; K i ) =  ai+ b,u;+c,u; (2.2) 

where ai= tanh(2K,), ah -tanh(ph), ~;=f(s,+,+s,-~),  f ? ( s ;  K;)  =f:(s"; K i )  and 

with u ; = s x + , s x - , .  Here, a i = a ( K j ) ,  bj=b(Ki),  c { = c ( K , ) ,  o j , b j , c i ~ R  and ~ , > 0 ,  for 
all i, and we are assuming for simplicity that the functions f X s ;  Ki) are the same for 
each individual rate wi, i.e.f:(s; K j )  =f"(s; Xi) for all i. It thus follows that the global 
transition rate (1.2) may be written rather generally as 

w(s;x) = AX+ Bxu; + Cxu; (2.3) 

AX=((a))+fa,((ba))-s,[ah((a))+~ba))l (2.4a) 

8" = olh((aa)) ((b)) + %((Ca)) - S,[((Ra)) + %((b)) + ( ( C a  ))I (2.46) 

C" =((c))+fah((b.))-s~[ah((c))+~(b~))l. (2 .4~)  

Here, a= tanh(2K)  and ( ( . . . ) ) = ~ i p i . . . = I d J p ( J ) . . .  where it is assumed that the 
distribution p ( J )  is normalized to unity. 

We may now apply to the present case some general concepts and theorems 
developed earlier [L6pez-Lacomba et af 19901. With that aim, one realizes that the 
stationary solution of (1.1). defined as the limit of P ( s ;  f )  as f +CO, may be written as 

P"(s)=Z-'exp(-E(s)} Z = x  exp(-E(s)}. (2 .5)  

where 

Consequently, 
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where X’ sums over every set of k lattice sites. Let us assume that 

forall k a k ,  (2.7) 

where ko is independent of N, at least for N >  Notoo. Thus, E ( s )  has a short-range 
nature which guarantees it involves no infinite coefficients J‘*’ when it refers to a 
macroscopic ( N +  m) system. When a unique stationary distribution function P”(s)  
exists such that (2.5)-(2.7) hold, E (s) plays the role of an efectiue Hamiltonian (Garrido 
and Marro 1989). Previous theorems (L6pez-Lacomba et a1 1990) then allow us to 
conclude that, in so far as the rates satisfy 

(2.8) 

(k) 
J,,,..,, = 0 

(((a?) + ((c)?)((b4) = ( ( (am??+h) ) ) ( (b ) )  

our system in section 1 has an effective Hamiltonian which is given by 

where 

K ,  = - k In([((A( 1 - a )N(B( 1 - a )))I[((A( 1 + a )?)((B(1 + a ))?I-’) (2.10) 

with A = a + b + c and B = a - b + c. That is, the effective Hamiltonian conserves in 
the present case the relatively simple structure of the original N N  king Hamiltonian, 
(1.4), in so far as (2.8) is satisfied, while the ensuing coupling constant K ,  inolves a 
rather complex interplay of T p ( J )  and kinetics. 

Note that the description contained in (2.5). (2.9) and (2.10) has a canonical 
structure, but it involves details of kinetics in addition to the disorder distribution. 
This may be interpreted by assuming that the configuration s is influenced, even 
dominated, by some imaginary external constraint which replaces the effect of the 
competing kinetics. That is, even though the spin system is relatively simple when (2.8) 
holds, it seems it still needs to be considered as a non-equilibrium system acted on by 
non-Hamiltonian agents. In any case, it is certainly exceptional that our model satisfies 
(U), as indicated in an example below, given that this follows from the requirement 
(L6pez-Lacomba et al 1990) that the efectiue transition rate (1.2) satisfies a sort of 
global detailed balance condition with respect to E ( s ) ,  namely o(s ;  x) exp[-E(s)]= 
o ( s x ;  x) exp[-E(s”)]. 

Lacking other criteria, our transition rates may be those used before in different 
problems, for example by Glauber (1963), which correspond to (2.2) with 

o = l  b=O c = o  (2.11) 

by Kawasaki (1972), i.e 

(2.12) I a =f ( l  + E - ’ )  b = -(1 - & ) ‘ / * E - ’  C= -I( 1 - E - ’ )  

where E -  1 -tanh2(2K) tanh2(ph), or by van Beijeren and Schulman (1984), i.e. 

a = cosh(ph) cosh2(K) b=O c=cosh(ph) sinh2(K). (2.13) 

Also interesting a priori are the rates characterizing the algorithm by Metropolis et a1 
(1953) which correspond to 

a = ( 1 + 1 * . ) [ ( 1 + ~ ) ~ + 4 . r r ] / l 6 ~  b = - ( l++) ( l -  x 2 ) / 8 x  c =  - f b  (2.14a) 
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when h > 2J, and to 

P L Garrido and J Marro 

a = (1  +p)’(l+ rr)/l6p+a(l + p )  

b = - ( l+  ~ ) ( l  -p’ ) /8p 

c = (1 +p)’(l+ m ) / l 6 p  -a(l+ p )  

(2.146) 

when h < 25; here, a = exp( -41KI), p = exp(-Zph). Altematively, we may consider 
the family of rates which depend only on the cost of the involved (spin-flip) transition. 
More precisely, it may be convenient to consider wi(s; x ) = + ( A H , ) ,  where +(X) is 
any function satisfying +(X)=e-”+(-X),  in order to fulfil condition (1,3), and 
+(O) = 1 and +(X)-rO as X -* 00, in order to be properly normalized. Then, the rates 
by Glauber (1963) and by Kawasaki (1972) correspond to +(X) = 1 - tanh($X), that 
by van Beijeren and Schulman (1984) is for +(X) = and +(X) = min(1, e-X) 
represents the rate by Metropolis et al (1953), if, for simplicity, one assumes that no 
field exists (h = 0). The relation between the two representations (when h = 0) is 

(2.15) 
which defines parameters a, b and c satisfying condition (2.8). Thus, it follows after 
using (2.15) that (2.10) may simply be written as 

K ,  = - a  ln[((+(4K)))((+(-4K)))-’I. (2.16) 
It should be emphasized that the sufficient condition (2.8) is not verified on most 

occasions. For instance, when a = 1 ,  b = -tanh(ZK) tanh(ph) and c = 0, (2.8) reduces 
to ((a’))=((a))’ for h # O  which does not hold unless p(J) has zero variance, which 
occurs at equilibrium. This has two important consequences. On one hand, most 
versions of our system, particularly those for d > 1 (and/or h # O), cannot be described 
by the quasicanonical formalism (2.5)+(2.9). In the light of the results in this paper, 
this suggests a rich and interesting behaviour for those cases (whose study is thus 
strongly encouraged). On the other hand, one should be able to obtain relevant 
information about those complex cases by a perturbative treatment around a reference 
situation which is characterized by the relatively simple quasicanonical formalism. For 
example, the system with d = 1,  h # 0 and arbitrary p ( J )  may be studied (e.g. to obtain 
the behaviour of the magnetic susceptibility) by performing an expansion around the 
corresponding case with h = 0. 

It  also seems worth while to emphasize that our basic model is defined via the 
Markovian equation (1.1) with rates (1.2). In a Monte Carlo study, one may either 
compute and use w ( s ;  x) as an effective rate, or perform the sampling which is suggested 
by (1.2) and then use the selected elementary rate wi(s; x)  to decide on the attempted 
flip. It is not granted a priori that these two procedures should lead to the same steady 
state in the present non-equilibrium problem, however. 

a, c =t[ +(4K)( 1 - a)-’ f +(O)] b=O 

.. 

3. Non-magnetic impure bonds 

Considerthedistributionp(J)=(l -q)G(J-J,)+qS(J): thebonds havestrengthJ= Jo 
in general, but are allowed occasionally to become zero with probability 9. I n  addition 
to our general interest in the nature of the ensuing steady states, this may be of some 
relevance to understanding the influence of microscopic disorder on macroscopic 
properties, for example the problem in magnetically diluted systems. As a matter of 
fact, the present system will undergo a kind of percolation phenomena, even though 
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it essentially differs from the familiar (bond) diluted Ising model (cf section 5 ) .  Note 
also that the existence of an effective Hamiltonian in this case implies that most 
properties simply follow from U = tanh K .  where K .  = -$ In(a+/a-), with a+ = 
q+(l-q)+(*4Ko) and K o - p J , ,  for the mentioned distribution; see figure 1 for a 
representation of this function. 

When the rate function is analytical, one has for small X that ,$(XI- 
l+X,$'(O)+ . . .  with ,$'(O)=-$. Thus, K . s ( l - q ) K , +  . . .  in the limit Ko+O. The 
latter is still valid for the whole family of rates we defined in section 2, even though 
(2.14) is not differentiable. On the other hand, one gets K.== 
-a ln{q[q+( l -q )~ ( -4KO)]~ ' )  when Ko+aO, and it is convenient to distinguish two 
different types of kinetics within that family, namely: 

Case (i), which is characterized by the asymptotic property: ,$(-X)- (L>O when 
X + m ,  as for rates (2.11) and (2.14) with p = 1 and 2 respectively; and 

Case (ii), which is characterized by + ( - X ) = e x p ( ~ X )  (with T <  1 as required by 
detailed balance) when X + m, as for rate (2.13) with T =$. 

2 .o 

1 . 6  

1 . 2  

Kt 

0 . 8  

0.1 

0 0. !. 0.8 1. 2 1.6 2.0 

2 0  

Ibl  
1 6 -  

1 2 -  

K. - 

0 8 -  

0 O L  08 1 2  1 6  2 
KO 

Figure I. The dependence of the effective bond 
strength Kc an K,=pJ, far a distribution p ( J ) =  
I 1  - 4161 J - Jo) + qS(J) (section 3). several values of 
q (from q = O  to q =0.9, increasing from top to 
bottom), and different rates: l o )  Glauber rates, 
lZ.l l1;  ( b )  Metropolis rates, (2.14): l e )  the rates by 
van Beijeren and Schulman, (2.13). 
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Interestingly enough, one gets K,--&In{q[q+(l -q)p]-'} as Ko+m for case (i); 
consequently, K ,  may only diverge for q =  1 (cf figures I ( u )  and ( b ) ) ,  which reveals 
that any competition of that kind makes the standard pure (equilibrium) zero. 
temperature critical point disappear. This is similar to equilibrium where a I D  system 
will lose the critical point for any non-zero concentration of non-magnetic impurities 
(cf section 5 ) .  In that sense, case (ii) is rather novel given that K S =  do when q # 0,1 
as KO+ m, which reveals that the critical point is stable for that competition (cf figure 
IC). The (thermal) critical exponents in the latter case, however, will equal T times 
the equilibrium ones, so that the neighbourhood of the critical point in parameter 
space strongly depends on kinetics. 

The influence of kinetics on macroscopic properties is a distinguished property of 
non-equilibrium situations. It is noteworthy, for instance, that one may define a kind 
of kinetics for which the system loses the (equilibrium) critical point, while another 
class of kinetics exists, for example, one consisting of a competition of rates (2.13), 
which produces critical behaviour even for q # 0. One may argue that, for the bond 
distribution considered in this section, the disorder is introduced in the system on a 
time scale which is proportional to q- ' ,  while the order occurs on a time scale which 
is proportional to [(l - q ) @ (  -4K0)]-'. Consequently, the condition 

will guarantee the existence of a critical point. One may easily check how this occurs 
indeed for any case (ii) kinetics, while both time scales are comparable for any case 
(i) kinetics. One may also note that, as depicted by figure 1( c ) ,  case (ii) is characterized 
by a change-over at q =; in the curvature of the K .  versus KO function which implies 
fcnher qua!i!i!ive changes behaviecr. 

3.1. Correlution length 

The spin-spin correlation function, (so&), and the correlation length, 5, follow from 
( S ~ S , ) = ~ - ~ ' ~ =  ux. Consequently, (= -(ln KO)-' as K,+O for q # 1, indicating that 
any kinetics behaves similarly and independently of q at high enough T. When KO+ m, 
however, the system may again show up two different behaviours. Namely, for case 
(i),wefind (= -(In u)-',with U =(A-q"* ) (A+q ' / * ) - ' andA=[q( l  -q)p]'/2.1eading 
as q +  0 to a divergence, 5 =fw1'2q-1'2, which is characterized by the percolation critical 
exponent vq = f .  Note that, as far as p # 0, this critical behaviour is independent of 
p,  i.e. of kinetics. For case (ii), however, U = 1-2  and one gets [=f  eliiK0 and 
u = 2 q  for example U =  1 for rates (2.13). This means that the correlation length 
exponent U is not universal; more precisely, it may depend on asymptotic properties 
of kinetics, for example on the behaviour of +(-X) as X + CO, but it is independent 
of q and other features. It may also be mentioned that, for a ID pure system at 
equilibrium ( q  = 0), one has 5" -f eZKo implying Y = 2, and (s,s.J, = ( I  - q)"(s,s,)o and 
5;' = -In( 1 - q )  + 50' when the system has bond dilution. Summing up, case (i) has 
some qualitative properties which are similar to those at equilibrium (e.g. the zero-T 
critical point washes out in the presence of any disorder, and percolation critical 
behaviour is characterized by U =constant), while case (ii) differs even more strongly, 
for example the disorder does not destroy the critical point and both thermal and 
percolation exponents depend on kinetics. Figure 2 illustrates some ofthese differences. 
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O 0 6  1 2  1 8  2 4  3 0  
K K 

Figure 2. The correlation length, 5- -x/ln(s,s,), as a function of 03 for the system of 
figure 1 with varying q ( q  = 0 to q = 0.9, increasing from top to bottom) and different rates: 
( a )  (2.11); ( b )  (2.13) 

3.2. Suscepfibilify 

Thesusceptibilityx=Z,(s,s,)=(l+u)/(l-u).Consequently,x--l+2(1-q)Kn+.. . 
at a high enough temperature. At low temperatures, case (i) is characterized by 
U = 1-2(q/p) ' l2  a n d ~ = ( p / q ) " ~ a s  q + O .  One may compare this with the equilibrium 
result x = I/q.  Case (ii), however, produces under the same conditions: U = 1-2  e-2nKn 

in the preceding paragraph. 
and = exp(zTxo) implying = " y ~ s  = 2". Tnis is  in with ihe conciusion 

3.3. Clusters disfribution 

The cluster distribution is P. = Z-'"+')(l -U)'( I +U)"-', Z, P,, =;(I - U), and the mean 
clustersizethenfollowsas(n)=2/(1-u).Thus,(n)=2[1-(1-q)Kn]~' as Kn+O: the 
clusters tend to become smaller as T and q are increased, as one would expect. When 
Kn-fm, we get ( n ) = ( p / q ) ' 1 2  leading to -y=i for case (i), and (n)=exp(2.rrKo) for 
case (ii); one has ( n ) = 2 (  in both cases. 

3.4. Energy and its fluctuations 

As mentioned above, our system admits two interpretations. On the one hand, one 
may imagine that J is changed all over the system at each kinetic step according to 
p ( J ) .  Each configuration may then be characterized by a random energy: 

E , ( s ) = - J  L S ~ S ,  (3.2) 

where J represents a random variable sampled independently for each configuration 
from p ( J ) .  Thus, Zr P " ( s ) E , ( s )  is the usual average over configurations. This still has 
a random character, however, and one may thus naturally define a mean energy as 

" 
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jdJp(J)(E,) .  Then, according to that interpretation of the changes in J induced by 
kinetics, averages should be computed in general as 

P L Garrido and J Marro 

[All  = J d J p ( J )  1 P"'(s)A(s; I ) .  (3.3) 

On the other hand, Glauber spin-flip processes have a local nature and, consequently, 
one may assume instead that J is only changed when connecting the spin involved by 
the attempted transition with one of its NN. Then, the (random) energy which may be 
associated with each configuration in the stationary state is 

E ~ ( s )  = - 1 J ( x , x + x ~ .  (3.4) 
NN 

Here, Jcr,x.) is randomly distributed according to p ( J )  both spatially for each configur- 
ation and between successive configurations for each NN pair (x, x'). Thus, the averages 
are in this case 

[AI2= I d J P ( J )  1 P"(s)A(s; J )  

uEn = -((J))(E sxsx+,) (3 .7)  

(3.5) 

where 

P ( J )  = n P(J(.,~. (3.6) 
( 1 . X ' )  

-. ._~.,-~-~- C ~ ~ . ~ . .  I *  m, I -  I\ .L.. *L. I-.._\ :. 2 --,.. -: L.. 
II IOIIOWS Irom (J.L)-(J.o) inat m e  (rnranj cneigy 15 arri ip iy  given uy 

for both interpretations. That is, e = [ E l  N-l= -((J))u = - ( 1 -  q)uJ,  for the system of 
interest; the behaviour of U is qualitatively similar to the one for K ,  in figure 1. 

The energy fluctuations, however, essentially differ for those two versions of the 
model. I t  follows from (3.2) and (3.3) and (3.4) and ( 3 . 9 ,  respectively, that [ E 2 h  = 

square mean fluctuations of the energy, A E 2 - [ E 2 J - [ E D 2 ,  are 
((J2))((L~xsx+l)2) and UE212 = ((J2))((z, s,s,+1)2)+2N(((J2))-((J))2).  Consequently, the 

(3.8) 

(3 .9)  

PE' = ( ( J 2 N ( u 2 )  -(U)'] + (U2)) - ( ( J ) ) ' ) ( u ) ~  
and . -2 I .a2r,  2< I~ \ 2 ,  , *I,,,, r2n I, rs2 ,  

YE: = R J #  L(U )-\U? I T L J Y I t J  n - R J B  I 

respectively. The last term in (3.9) is of order N implying that the relative magnitude 
of fluctuations, [ A E ' ] ' " / [ E l ,  is of order N-'I2.  Consequently, those fluctuations vanish 
within the limit N +CO, as for equilibrium. The last term in (3.9), however, is of order 
N 2 .  Consequently, the relative magnitude of fluctuations is then finite in the thermody- 
namic limit, as one should expect for the first interpretation of the model where kinetics 
may I n u U G e  erlelgy L-rrarrgcs U, ULOCl J'" a, C d C l l  X G p .  l l U J  J C C I I I O  L L L C  ""LJ LOab.1111-1 

difference between the macroscopic behaviour of the two interpretations mentioned. 

C , . . d e / d T = - k , ( l - q ) K ~ ( l - u ' ) [ J K , / d K , ] .  (3.10) 

This implies a rich critical behaviour. It is also interesting to consider the relation 
between C, and AE2 which reveals a general failure of the fluctuation-dissipation 
theorem. In fact, this is prevented by the last term in equations (3.8) and (3.91, which 
represent specific non-equilibrium fluctuations, and by the more standard fluctuations 
represented by the first term of P E 2 ,  which differ from those measured by (3.10). 

:-> ^L ̂ _ ^ ^ ^  ^r --A-- ,*, .̂ ̂..̂ I- "&.... TL:" " ~ ~ - "  .La ,."I.. aooe..+:"l 

We may also define a non-equilibrium specific heat given by 
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3.5. Entropy 

Finally, one may define an effective entropy as 

S = -k, 1 P ( s )  In P"(s) (3.11) 

cf (2.5). It follows that Sk;' = - K .  tanh K.+ In(2 cosh K.) and, for the specific distribu- 
tion p ( J ) = ( 1 - 9 ) S ( J - J o ) + q 6 ( J + J o ) ,  for instance, onegets 

Ski' =In 2-$( 1 -2q)'K;+O( K : )  (3.12) 

as KO + 0, and 

Sk;l=ln(2coshK)+x exp(-4Ko) tanh K - [ K + X  exp(-4Ko)] 

x [tanh K + x exp(-4Ko)][ 1 - x exp(-4Ko) tanh K ]  

as Ko+m; here, ~ = i l n [ ( l - q ) q - ' ]  and x=a(l-Zq)[q(l-q)]-', 

(3.13) 

4. Impure bonds of large strength 

In addition to the case of bond dilution, it is interesting to consider the distribution 
p ( J ) = 9 S ( J - J o ) + ( l - 9 ) S ( J + J , )  with l o ,  J,>O,particularlywhen 9 isnearunityand 
J, >> J,,, say J, + m (see, for instance, Labarta el a1 1988). The effective coupling constant 
(2.16) becomes K.=-aln{[q+(4Ko)+(1 -q)j~]/qq5(-4Kd] for that distribution when 
J, +m. Forcase (i) kinetics, this reduces to K.=-$ln{[(l - q ) p + q ] q - l )  when T+m, 
and to i<.= -iin[(i -9j9-'j when T + 6 .  Tnis means, in particuiar, that, contrary in 
a sense to the situation in section 3, kinetics now influences any state, even the infinite 
temperature state, with the only exception of the ground state (where spins need to 
point out in one of the two possible directions anyway) which is independent of 
kinetics. Moreover, the effective interaction K, is negative when T + m  for any value 
of q, and it remains so when T+O as far as 9 < ; ,  whereas it then changes sign for 
q > f .  Cnnsequent!yl as far a s  q > f, we may define KB by means of condition qd(4K;) + 
(1  - q)& = 94( - 4 K 3  which locates the transition between two regions of the phase 
diagram whose behaviour is predominantly ferromagnetic and antiferromagnetic 
respectively. For example, KB= -aln[(Zq-l)q-'] for rates (2.14) and K ; =  
-iln(29-1)forrates(2.11);inbothcases, K;+Owhen q + l  andKG+mwhenq++.  
Note, however, that this transition is smooth; in particular, the correlation length and 
other quantities remain analytical there. 

The situation is less puzzling for case (ii) kinetics, for example one obtains that 
the effective temperature goes to zero as J, +m for any value of T and 9. 

5. Comparison with standard models 

In principle, our systems may be related to a series of familiar equilibrium disordered 
systems, namely, king models with either quenched or annealed impurities (see, for 
instance, Stinchcombe 1983). We investigate that possibility in this section. 
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5.1. Quenched impure sysfems 

One may define a quenched or frozen-in impure (equilibrium) Ising model on  a I D  

lattice (Fan and McCoy 1969) via the canonical partition function: 

z ~ = I e x ~ [ - P H d s ) l = I n  Kys.., (5.1) 

P L Garrido and J Marro 

I X  

where 

H N ( s )  = -1 JxsXsx+, -F1 1 In Y L + ,  (5.2) 
x x 

note that spatial variations of the bond strength are allowed for here. Then, the transfer 
matrix method, for example, leads to the free energy per site 

f= N-’ 1 ln[2 cosh(pJ,)] =((ln[2 cosh(pJ)])) (5.3) 
x 

x = 1,2, .  . . , N, and to the energy per site 

U = N-‘ I (s,s,+J = ((tanh(pJ))) 
x 

(5.4) 

where ((. . .)) now represents an average with respect to the (normalized) distribution 
p ( J )  used to sample the spatially varying bond strength. The last terms in equations 

Considerthenon-symmetrical bonddistributionp(J) = qS(J-J,)+(l-  q ) S ( J -  J , ) .  
(5.3) and (5.4) fn!!nw after reqniring that hi-rm. 

This leads to 

f =  9 ln(2 cosh Ko)+( l -9)  ln(2 cosh K : )  

u = q t a n h K , + ( l - q ) t a n h K ,  and 

where Kj = pJi, i = 0, I .  When the system has non-magnetic impure bonds, say when 
Jo # 0 and 5, = 0, which corresponds to the case studied in section 3, the following 
thermodynamics follow: f = I n 2 + ~ 9 K ~ + O ( L ~ ) ,  u = q K , + O ( K i )  and C,=-qpK, as 
Ko+O, and 

f = ( l - 9 )  In2+qKo+O[exp(-2Ko)1 u=9[l-2exp(-2Ko)1+O[exp(-4Ko)1 

and C,  = -49pK0 exp(-iK,) as &+W. Tine correiaiion Function is (sosx) = ur and, 
consequently, the correlation length behaves f - ‘  =In 9 as KO+ 00, namely, any impurity 
washes out the pure zero-temperature critical point, as mentioned above. 

This situation hears some similarity only with the corresponding one for the 
non-equilihrium system in section 3 driven by  rates (2.11) or (2.14), i.e. case (i) kinetics. 
The energy U is the same in both cases when T+m,  while one gets U = 9 and 

= ([(I -9 j+ 9 p ] ’ 1 2 - (  1 - q ) ’ , ~ ) ( ~ ( l  . ,,. .. . - 9 ) +  9p]::2+(l - 9 j v ~ )  , I  ,,._, . 

as T +  0 for the equilibrium and non-equilibrium systems, respectively, the latter 
behaving U = 1 - Z ( E / ~ ) ” *  when 9 = 1 - E  with E + 0. Consequently, even though there 
is some similarity between the two cases, only the behaviour of the non-equilibrium 
system is crucially determined by kinetics. (In fact, this was expected given our 
comments on the system interpretations in section 1.) Thus, one might argue that the 
macroscopic differences should he minimized when considering the annealed impure 
case where kinetics plays some more fundamental role in determining the system 
thermodynamics. This is not fully confirmed, however, as shown below. 
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Consider now the case p ( J ) = q 8 ( J - J 0 ) + ( 1 - q ) 8 ( J - J , )  when Jl+ -a, for 
instance. One gets U = q tanh KO- (1 - 4 ) .  Thus (as occurs for the non-equilibrium case 
mentioned in the preceding paragraph) the quantity U when +cc is negative for 
q <f, while it becomes positive for q > f, and one may define a critical temperature 
corresponding to u = O  when q > $ ,  namely, KZ=-$ln(2q-l). 

5.2. Annealed impure systems 

The corresponding annealed case (Thorpe and Beeman 1976) may he defined via the 
partition function: 

N 

ZN =X TI dJ,p(J,) exp(PJXwz+J =X II((exp(PJwx+l))). ( 5 . 5 )  
I r=1 I X  

For the bond distribution p ( J )  = q S ( J - / , ) + ( l - q ) G ( J - J , ) ,  one has 

f=ln[2q cosh(pJo,)+2(l- q )  cosh(PJI)l. (5 .6)  

K c R ~ x ~ x + I  + 5- In+xp(PJw,+,)h\. (5.7) 

Keff = f In[((eK))((e-K))-'l (5.8a) 

It is then convenient to define KeR and < such that 

Thus 

and 

< = ~n[( (e~))"~( (e-~  ))'I2]. (5.86) 

That is, the system may be described by an efective Hamiltonian defined by (5.7).  It 
then fo!!ows that 

f =  ln[((eK))+((e-K))l (5.9) 

and one may define the system energy as U = tanh KeR. 
When one uses oi(s; x)=exp(-fAH) in (1.21, equation (2.16) transforms into 

K ,  = -$ln[((e2K))((e-2K))-I].  This means that our system has an effective Hamiltonian 
which is simply related to (5 .8a ) ;  namely, K,=$Ke.(2Pf for rates (2.13) (case (ii) 
kinetics). The fact that the annealed bond-diluted system is close to that of our model 
versions is not so surprising after all given that, as was proved before, this particular 
version is simply characterized by K ,  = KO for a pair bond distribution with ((J)) = Jo, 
i,e. it essentially reduces then to equilibrium. More interesting is the fact that, even 
though that similarity is quite far from general, an important conceptual relation 
between equilibrium and non-equilibrium models exists. In fact, equilibrium, annealed 

some (essential, however) property concerning the (dynamical) nature of the bond 
disorder p ( J )  which enters the definition of those systems. The distribution is, respec- 
tively, frozen-in, in equilibrium at temperature T with the other degrees of freedom, 
and changing at random as implied by some sort of local process at infinite temperature. 
Two comments are in order. On the one hand, only the annealed case, where impurities 
themselves try to minimize their effect, for example by moving towards the interface, 
turns out to be physically trivial to the understanding of real disordered systems. On 
the other hand, one may formulate an interesting situation which generalizes those 
three cases (Garrido and Marro 1991b). 

"..A _-I -n..:liL-:..--. rlil..+n I-:.." s..~+P-c --I. ,  A:+Ta* ir. r r ~ r t i r n  fin- snrh -+ha- L.. 
Lluu ,,""-"~""1"L'Y'L' Y l l Y L C  '""LB "J"LCL1."  "'U, ...LI*L 1.. p>"uL.*.. L.Y... *'...,I " L l l r ,  " J  
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6. Some exact results for d 3 2 

In principle, the formalism in sections 2-4 may be applied to d > 1. The general 
theorems (Garrido and Marro 1989) then imply that, for local transition rates having 
certain symmetry properties, for example the rates enumerated in section 2, an effective 
Hamiltonian may exist which needs to have the N N  king structure of the original 
Hamiltonian (1.4). The theorems also state a necessary and sufficient condition for its 
existence; this is not satisfied, however, by any version of our model system when 
d > 1. Consequently, the ZD and 30 versions cannot bear the quasicanonical nature 
which is implied by a global detailed balance condition, as we discussed in section 2. 
This has two main effects. First our systems will depict in general a more complex 
non-equilibrium behaviour for d > 1 than for d = 1. Second, other methods of study 
need to be used ford  > 1. We follow here two different approaches to obtain information 
for the latter cases. 

We may obtain upper bounds for the critical temperature of the d-dimensional 
non-equilibrium impure system from the positivity property of the transition rate. That 
is, one may always write the rates driving a stochastic process as 

P L Garrido and J Marro 

w(s;x)=fo(x)  l -s ,xP,(X)s ,  . (6.1) 

Here, o(x j  > 0, the sum is over aii possibie diiierent sets of spins, LI, s, =E,,, s,, and 
P,(x)  are real functions. Consequently, once w ( s ; x )  is known, one has 

o ( X ) = 2 1 - N x o ( S ; X )  (6.2) 

L 1 

and 

It may be shown (Ligget 1985) that, when the minimum possible value of o ( s ;  x) is 
positive, i.e. 6 = inf, w ( x ) [  1-2- lPe(x)l] > 0, the process is exponentially ergodic. This 
means that, for almost any initial distribution of spins (i.e. any probability measure 
p E 0) it is [ ( x ~ ) ~ , +  - du s. I s 2 e-*‘ indicating that the system will relax exponentially 

As an illustration, consider a I D  system with w ( s ;  x ) =  qw,(s; x ) + ( l - q ) w - , ( s ;  x) 
and w,(s;  x) = &@AH,) using an  obvious notation. It follows from the above theorem 
that a unique phase exists for any T >  To, where 

r.pid!y In time tn\.r.rds I xniqxe swina.ry state (k invariant measure U); 

T i ’  = f In{[l + 2 ( q z -  q+f)1’2]12q - ll-’} 

for rates (2.13), and T,=O for rates (2.12) and (2.14). Consequently, a I D  system can 
only undergo a phase transition (at Tc< To) for rates (2.13). A 2~ system with rates 
(2.14) will always be (exponentially) ergodic in so far as 7 S 1 6 q S 9  for any finite 
temperature (i.e. To = 0 in this case), while it may have a phase transition when q 3 9/  16 
or q s 7 / 1 6  for T <  To, where 

T-1- , - -? ln{f[4(4q - 1)2-3(9- 16q)]”2-$(4q-1)}. 

When d = 2  and the rates are (2.13), however, T,ZO exists which is the solution of 
(8q-7)x4+4x’+6x2+4x+ 1 -8q =0,  x = exp(-2/To), for any q. When d = 3  and the 
rates are (2.14), T,#0 exists for any q which is the solution of ( 5 - 8 q ) x ’ + 3 0 x 2 +  
15(8q-3)x - 14(8q-3) EO. 
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The system in section 3, whose kinetics involve non-magnetic bonds with probability 
q, may be analysed by the same method. The corresponding result for d = 2 and 
Metropolis rates is the following. Define A =  x2+4x + 8 q [ 3 ( 1  - q ) ] - ‘ - 7 / 3  with x 
exp(-4K0). The system is ergodic at any T for A > 0 and 1 3 q > 7/ 15, while it may 
undergo a phase transition for 7 / 1 5 >  q > O  at T,< To, where Ti’=  
-fln{[f(19-27q)(l-q)-1]1’2-2}. Some bounds for d = 2  and 3 are represented in 
figures 3 and 4. 

Finally, we note a useful representation of the system dynamics at zero temperature. 
The case o ( s ; x ) = q o , ( s ; x ) + ( l - q ) o ~ , ( s ; x ) ,  o , ( S ; X ) = ~ ( p A H , ) = m i n ( l , e ~ X ) ,  

15 

10. 

T 

” I 

. . . 
f.-.--,,‘ 

4 

Figure 3. Variation with q of the exact upper bounds in section 6 for T, in the case of 
a d-dimensional system evolving via competing spin-flips driven by Metropolis rates: 
( 0 )  d = 2  and the band dilute case p ( J ) = ( I - q ) S ( J - J , ) + q S ( J ) ,  J , zO;  ( b )  s a m e p ( l )  
and d = 3 :  ( c l  d = 2  and the case of a competition between ferro. and antiferro- 
magnetic interactions, p ( J ) = ( l - q ) S ( J - J , ) + q S ( l + J , ) ;  (d)  same p ( J )  and d = 3 .  The 
system is necessarily ergodic in the upper region defined by the curve at each case. 

I 
q 

Figure 4. Same as figure 3: ( e )  d = 2 and the case of a ferromagnetic s y ~ t e m  with (antifer- 
romagnetic) impure bands having very great strength, p ( J )  = 9 6 ( J - J 0 ) + ( l  - q ) S ( J + J , ) ,  
J ,  + m; (f) same p ( l )  and d = 3. The latter (broken) line asymptotically tends to p =0.701 
as T-rm. 



1468 

which we have considered before (see also Garrido and Marro 1991a), is equivalent 
at T=O to a f-spin system on a lattice of arbitrary dimension d which suffers no 
influence of a heat bath but simply evolves according to the prescription: 

P L Garrido and J Marro 

(6.4) 

It also follows that the corresponding prescription for the dilute system in section 3 
may be represented by 

under the same conditions, i.e. T = 0, Metropolis rates, and arbitrary dimension. (Note 
that (6.4) and (6.5) are close to the kinetics defining certain familiar cellular automata 
such as the uofer model (Ligget 1985).) Now, the theorem above in this section allows 
us to conclude about the ergodicity of the d-dimensional system at zero 'I Namely, 
the system withp(J)=( l -q)S(I - l , )+qS(J) ,  J,>O, is ergodicforany q when d = I ,  
for (7/ 15) 6 q S 1 when d = 2, and for (35/67) S q s 1 when d = 3, and the ergodicity 
of the system with p ( J ) = ( I - q ) S ( J - J , ) + q S ( J + I ~ )  is guaranteed for any q when 
d = 1 ,  and for (7/16) S q S  (9/16) when d = 2, while our bounds reveal no region when 
d = 3 where the system is necessarily ergodic. 

7. Summary of results 

A class of non-equilibrium lattice models has been introduced in this paper. Our main 
motivation was twofold. On one hand, they serve to illustrate the rich variety of 
non-equilibrium steady states, phase transitions and critical phenomena. On the other, 
they might contain the required basic ingredients to deepen the present understanding 
of macroscopic behaviour in some impure systems, namely systems which have either 
bond dilution or defects consisting of bonds of infinite strength. A remarkable con- 
clusion here is, however, that our latter expectation will only be properly evaluated 
after solving the models for d 2, for example by Monte Carlo or other methods. This 
would allow a detailed comparison between the behaviour of equilibrium and non- 
equilibrium models, and a comparison of that behaviour with real experimental data, 
an objective which is beyond the prospects of the formalism and results in this paper. 
Here, we report the exact solutions for d = 1, and we mainly focus on the properties 
of the ensuing phase transitions and critical phenomena. We also report exact bounds 
concerning critical behaviour when d 2 2, and a simple representation of system 
dynamics at T = 0 for arbitrary dimension in terms of cellular automata. The latter is 
relevant for studying the ground state; this is illustrated here by finding ranges of 
values for the impurity concentration making the system necessarily ergodic at zero 'I 

The model kinetics consist of a simultaneous superposition of several spin-flip 
(equivalently, creation-annihilation) mechanisms, as stated in (1.2); each is stochastic 
and canonical, and acts independently with some probability p ( J )  as if the involved 
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coupling constant J has a given (random) value. Under certain conditions, some of 
our systems are quasicanonical, i.e. they may be described sometimes by a NN king-like 
Hamiltonian with an effective coupling constant K .  which depicts in general a rather 
complex dependence on temperature T. The existence of this quasicanonical property, 
and the function K,= K , ( T ) ,  are crucially determined by (i) the specific transition 
rate which controls the elementary kinetic mecanism, (ii) the symmetries of the involved 
Hamilfonians, and (iii) d. 

T h e  rates which are familiar in the literature for dealing with different problems 
may be written o,(s; x) = +(AH,). Here, AH represents some cost of the transition 
between successive configurations, and +(X)  is an arbitrary function with properties 
4(X)=e-Xq5-X),  +(0)=1,and +(X)+Oas X + m .  When thesystemisunderzero 
field, the rates used by Glauber (1963) and Kawasaki (1972) correspond to + (X)=  
1 - tanh(iX), those used by van Beijeren and Schulman (1984) are for + ( X )  = e-x’2, 
and + ( X ) = ~ n i n ( l , e - ~ )  conforms to the algorithm by Metropolis ef a1 (1953). We 
find that those rates admit two different classes when studying the nature of phase 
transitions and critical phenomena. Namely, case (i) (e.g. Glauber and Metropolis 
et al)  is characterized by the fact that + ( - X ) = p >  0 when X + m ;  case (ii) (e.g. 
van Beijeren and Schulman) are such that 4(-X)=emX, r < I ,  when X+m. 

The non-equilibrium bond-diluted system occurs forp(J) = ( 1  - q ) S ( J - J , ) +  q S ( J ) .  
This reveals an interesting behaviour, including the essential dependence of the latter 
on kinetics. In fact, the pure (equilibrium) zero-temperature critical point washes out 
for case (i) in the presence of any disorder (i.e. for q # 0), as is known to occur in the 
equilibrium ID system with any non-zero concentration of broken bonds. The zero- 
temperature critical point remains, howeve, in case (ii) for any q#O,  1, and the 
associated thermal critical exponents equal TI times the equilibrium ones. That is, we 
find (non-universal) critical behaviour which depends on asymptotic properties of the 
raie, .$e aiso find 
a critical point for that bond distribution. Kinetics only become irrelevant at high 
enough temperature. On the other hand, fluctuation-dissipation relations fail here in 
general. In fact, the system energy has typically specific non-equilibrium fluctuations, 
in addition to more standard fluctuations, which however, become, anomalously large 
in one of our model versions. The system depicts interesting percolation behaviour as 
well. The mean cluster size (n) decreases with increasing T and q, and (n) is simply 
related to the correlation length 5: (n) = 25. The latter shows a divergence for case (i) 
when q + 0; this is characterized by the critical exponent Y = f , independent of kinetics, 
which is to be compared with the equilibrium value v = 2. For case (ii), however, one 
gets u=2a; thus the system then has a rather complex critical behaviour which 
markedly differs from the equilibrium case. It is of interest to mention that the quenched 
dilute spin-glass king model has also been reported (Klein er al 1989) to have a critical 
behaviour which differs from that characterizing the standard percolation phenomena 
in the quenched dilute Ising model. 

The non-equilibrium impure system with bonds of infinite strength occurs for 
p ( J ) = q S ( J - J , ) + ( l - q ) S ( J + I , ) ,  J , , J , > O ,  when q is near unity and J ,+m.  In 
addition to its own interest, the comparison with the case in the previous paragraph 
illustrates novel features which corroborate the richness of non-equilibrium steady 
states, In fact, case (ii) now reveals that producing the simplest behaviour, given that 
the effective temperature then goes to zero as J ,  + m independently of the values for 
T and q. In contrast, case (i) produces an essential dependence on kinetics for any 
temperature except for T = 0. Moreover, the phase diagram has two regions which 

condiiion ( i  - qj+( -‘$i<,j 9 q guaisniees the e*isience of 
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correspond to predominantly ferromagnetic and antiferromagnetic behaviours, respec- 
tively, with a smooth transition located at  a temperature which is finite except when 

A main general conclusion is that critical exponents here are typically independent 
of q and other features, but may depend on asymptotic properties of kinetics such as 
the shape of +(-X) as X+m. This, which adds up to the behaviour shown by other 
systems with competing kinetics (see, for instance, Garrido and Marro 1991a), indicates 
that the concept of universality for non-equilibrium systems may be much more subtle 
than in equilibrium. Using the language of renormalization group techniques, certain 
properties of kinetics may play the role of relevant and marginal parameters in 
non-equilibrium theory. 

Finally, a detailed comparison between the macroscopic behaviour of our systems 
and that of familiar equilibrium disordered systems, namely, king models with either 
quenched or annealed impure bonds, is also reported for d = 1. Certain occasional 
similarities exist suggesting, in particular, that (in spite of a general observation at  the 
beginning of this section) our systems may certainly bear some relevance to the 
understanding of the complex behaviour observed in real materials. We believe that 
some of the questions raised here, and the systems themselves, deserve more attention; 
consequently, we are presently studying the case d 3 2  by approximate methods which 
include Monte Carlo analysis and mean-field theory. 

q + l  or;. 
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